
OF THE CONVERGENCE 
OF OPTIMIZATION ALGORITHMS 

E. POLAK 

EI 
0 .a 

d 
0, 
z 
2 
d, 
U 

% - 
Janvier-FCvrier 1969. - No 16 R-I 



ON THE CONVERGENCE 
OF OPTIlMIZATION ALGORITHMS 

par E. POLAK 
Department of Electrical Engineering and Computer Sciences, University of California, 

Berkeley and Institut Blaise-Pascal, 23, rue du Maroc, Paris (lge) 

RBsum6. - Cet article prdsente un thdortme de convergence pour une classe d'algo- 
rithmes de recherche de ((point dksirable n, qui convient particuli2rement d la synthtse et d 
I'obtention de bornes qualitatives de sensibilite' des proce'dures de recherche. Pour illusirer 
son aptitude d la synthtse de nouveaux algorithmes, il est utili& pour obtenir de nouvelles 
varianies des algorithmes de direction rdalisable, gradient projetd et ddcomposition duale. 

INTRODUCTION 

One of the greatest frustrations in the study of optimization algorithms is 
the almost total lack of a general theory. This lack is possibly due to the fact 
that algorithms are inventions and that their convergence proofs are usually 
done on an ad hoc basis. In response to this challenge, however, a few papers 
[l], [2], [3] have appeared in the last two years, in which attempts were made 
to extract, from available proofs, a number of principles governing the conver- 
gence of certain classes of algorithms. 

The present paper is less concerned with the process of extracting general 
principles hidden in published convergence proofs than with the construction 
of a theory of algorithms which can be used to synthesize new methods or 
modify old ones. Specifically, it shows that certain forms of necessary condi- 
tions of optimality are particularly suitable for utilization in algorithms. Also, 
it presents a new convergence theorem (somewhat akin to theorems in [2] and 
[3], a particular case of which &st appeared in [4] and which is particularly 
easy to use in the synthesis of new optimization algorithms. To illustrate its 
applicability, a few modifications of feasible directions [5] and gradient pro- 
jection [6] algorithms are presented, as well as a new hybrid type algorithm 
and a new dual type algorithm. Its applicability to other algorithms is des- 
cribed in [4], [7], [8]. Thus, this convergence theorem opens up a new possi- 
bility for a unified study of a broad class of algorithms. 

** 
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I. PRELIMINARY RESULTS 

We shall restrict ourselves in this paper to the following canonical problem. 

(1) Problem : Given continuously differentiable functions fo,fl, ...,fm from 
R" into R', find a vector 2 E R" satisfying f '(2) < 0 for i = 1,2, ..., m, such 
that 

(2) 

To be sure that (2) makes sense, we shall assume that either the 
set Q = { x I fi(x) < 0, i = 1,2, ..., m ] is compact, or else that for every 
u E R* the set { x I f o ( x )  < M 1 is either bounded or empty. 

(3) Definition : We shall call the elements of the constraint set i2 feasible, 
and we shall say that a vector i E i2 is optimal if it satisfies (2). 

We begin by recalling a few characterizations of an optimal vector $. These 
characterizations will subsequently be used in algorithm stop rules (see [lo], 

(4) Theorem : If 2 is optimal for (1) and S is any compact subset of R" 

f'(2) = min { fo (x )  I f ' ( x )  < 0, i = 1,2, ..., m . 

C111). 

containing the origin in its interior, then 

min max < V f i ( $ ,  h ) = 0, 
h € S  i E J o ( 2 )  

(5)  

where, for tl > 0 and any x E Q, 

(6)  

Proof: Suppose that (5 )  does not hold at an optimal $, then there is a 

(7) 

J,(x) = { 0 } U { i I f ' ( x )  + M 2 0, i E { 1,2, ..., rn } } . 

nonzero h* E S such that 

min rnax < ~f'($, h > = max < vfi(2), h* ) = - 6 
h E S  i € J o ( ? )  i E .Io(%) 

where 6 > 0. Hence there exists a A* > 0 such that 

f i ( i  + Ah*) < 0 for i E Io($ and A E (0, A*], 

f i ( 2  + Ah*) - fi(i) < 0 for i E J0($ and A E (0, A*], 

i.e. any x = 2 + Ah*, A E (0, A*] is feasible and results in a lower cost than 2, 
which contradicts the optimality of 2. Q.E.D. 

has no interior, then (5 )  is satisfied at all x E Q, which 
makes (5) a useless condition in this case. 

(8) 1 

(9) Remark : If 

(1) x($ denotes the complement of .To(;) in 0, 1 ,  2, ..., m. 
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(10) Corollary : If $ is optimal for (l), then there exist multipliers Ee < 0, 
E,' < 0, ..., Em < 0, not all zero, such that 

m c EfV f '(i) = 8 
i =o  

= o for i = 1,2, ..., m. 

Proof: Let F be a matrix whose rows are V f i ( $ ) ,  i E Jo($), and let p be the 
cardinality of Jo($). Then, by (5), the subspace FRn = { y I y = Fx, x E R" > 
must be separated from the convex cone { y I y 6 0 1 C RP, i.e. there exists 
a nonzero vector E E RP such that 

for all 
(12) { 5, Fx ) = 0 for all x E Rn. 

Assuming that the components of y E RP and E E RP are numbered with 
indices from .Io($), rather than consecutively, (12) yields 

6' < o for i E .I,(;) 

( E, y ) Z 0 y 6 0, y E RP, 

c E,'v f '(2) = 0. 
ie.Jo(i) 

Setting E,' = 0 for all i E jo($), we now get (10) and (11). Q.E.D. 

(14) Theorem : Suppose, in addition to the assumptions stated in (1) that 
the functions f i ,  i = 0, 1, 2, ..., m are convex and that !2 has an interior. Then 
any vector $ E Q satisfying (5) is optimal. 

Proof: Suppose (5) is satisfied at a non-optimal $ E !2 and let xo be any 
point in the interior of SL. Then there exists a x* E !2 such that f O(x*) -= fo($), 
and, for some h E (0, l), the point x1 = Ax, + (1 - A)x* is in the interior of 
the set { x I f o ( x )  - f '(2) < 0, f '(x) < 0, i = 1,2, ..., m >. Hence, by con- 
vexity of the f i we obtain 

( V f i($), x1 -$ ) < f '(xl) - fi($ < 0 for i E Jo($). (15) 

But cc(xl - 2) E S for some cc > 0, and hence (15) contradicts (5). Q.E.D. 

(16) Corollary : Under the assumptions of theorem (14), any $ E Q which 
satisfies (11) for some multipliers EO < 0, E1 < 0, ..., Em < 0 (note EO # O!) 
is optimal. 

The proof of the above is trivial and therefore omitted. 
In order to establish the convergence properties of the algorithms we are 

about to present, we shall need the following new theorem. The reader should 
note that it belongs to the same family of convergence results as theorems by 
Topkis and Veinott [3] and Zangwill[2]. However, the theorem below is more 
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direct and more general than the Topkis and Veinott result and is easier 
to apply, though not quite as general as the Zangwill result. 

(17) Theorem : Let Tbe a subset of Rn, let c:  T +  R1 be a (( stop D function, 
and let a : T 3 T be a search >) function. Suppose that : (i) T contains desirubIe 
points which can be characterized by the fact that 2 E Tis desirable if and 
only if 

(18) C(U(3) < c(2) ; 

(ii) Either c(0) is continuous at all non-desirable x E Tor else c(x) is bounded 

(iii) For every non-desirable x E T there exists a E(X) > 0 and a 6(x) > 0 
from above for x E T; 

such that 

(19) 

Let { xi  } be a sequence in T constructed according to the rule 

(20) 

and satisfying 

c(u(x’)) - c(x’) 2 6 for all x’ E T, IIx - x’II < E. 

xi+l = u(xi), i = 0, 1,2, ... 

(21) C ( x i + A  > 4x3. 
Then, either { x i  } is finite and its last element is desirable, or { x i  } is infinite 
and every accumulation point of { x i  } is desirable. 

Proof: Suppose that { x i  } is finite and that x, is its last element. Then the 
construction of new elements must have stopped because c[u(x,)] < c(x,), i.e., 
because x, is desirable. 

Now suppose that { x i  } is infinite and that x i 4 x *  for iE K, 
K C  { 0, 1,2, ..., }, with x* not desirable. Then there exist E* > Oand 6” > 0 
and an integer k E K such that for all i 2 k, i E K, 

(22) IIxi-x*II < E* 

(23) 
and 

C(Xi+1) - c(xJ > 6*. 

Hence, for any two successive points xi,  xi+j, i, i + j E K, i 2 k, of the 
subsequence, we have 

(24) 

C(X;+~> - C(XJ = [c(xi+j) - c(xi+j-JI + + [c(xi+l) --(xi)] > a*. 
But, because of (21) and (ii), c(xi) -+ c* < co for i E K, i +  co, which is 
contradicted by (24). Hence each accumulation point of { xi  } must be desi- 
rable. Q.E.D. 
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We shall now show how the above theorem may be used to prove the con- 
vergence of some well known algorithms. It will be seen that the nature of 
theorem (17) is such that not only does it permit us to prove convergence of 
these algorithms but that it also enables us to establish certain qualitative 
bounds on deviations from the ideal subprocedures making up these algorithms, 
which are compatible with convergence. It will also be seen that it provides 
guidelines for the derivation of new algorithms from old ones. 

It. METHODS OF FEASIBLE DIRECTIONS 

In this section, we shall consider a class of methods introduced by Zou- 
tendijk [5] together with some new modifications. We shall assume that the 
set Q has an interior, since otherwise these methods make no sense as we shall 
soon see. 

(25) Definition: For cc 2 0, let ‘pa: i2 + R1 be defined by 

cp,(x) = min max ( Vf”(x) ,  h ) 

where J,(x) is defined as in (6), and S is any given compact set containing the 
origin in its interior (note that when IR has no interior cp,(x) = 0). 

L E S  i € J E ( x )  

(26) REMARK: To evaluate cp,(x) we solve 
minimize c 
subject to c - ( V f i ( x ) ,  h ) 2 0 (27) for i E J,(x), h E S. 

The optimal pair IT&), h,(x) for this problem satisfies 

cp,(x> = ca(x),%(x) = max < Vf’(x), h,(x) > * 
i E J a ( x )  

In solving (27), we shall always set h,(x) = 0 whenever c,(x) = 0 and h,(x) 
is not unique. Note that a sensible choice for S would be S = { h I lh’l f 1 }, 
or s = { h I lfhll < 1 >. 

The algorithm we are about to present in the form of an idealized computer 
program will find points $ E IR such that cpo($) = 0. Note that these algo- 
rithms are parametrized by the particular choice for the set S. 

(28) Algorithm : Suppose that a xo E i2 (I) and E > E‘ > 0 are given. 
Step I :  Set &(x0) = E [We shall use the abbrevjiated notation = c(x0)]. 

(1) To find a xo E a, solve, using the algorithm (28), the problem 
min {a l p ( x )  -a < 0, i = 1,2, ..., m 1, 

a’ = max { fi(x’) I i = 1,2, ..., m }. 
Since the optimal value B for this problem satisfies 13 < 0, (28) will construct a xo E n 
in a finite number of steps, provided Sa has an interior. 

with initial feasible point x’, a‘ where x’ is arbitrary and 
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Step 2: Compute cp,,(x,) and h,,(x,) by solving (27) for M. = so, x = xo. 

Step 3: If cpQ(x0) -= - coy set h(x,) = h,,(x,) and go to step 4. 

If cp,,(x0) 2 - E, and < E' compute cpo(xo). 

If cpo(xo) = 0, set xo = xo and Stop. 
If cpo(xo) < 0, set so = s0/2 and go to step 2. 

If cpso(xO) 2 - E, and 
Step 4 :  Compute A(xo) 2 0 such that 

> E', set E, = so/2 and go to step 2. 

A(xo) = max { A I f i ( x o  + mh(x,)) < 0 for all cc E [0, A] 

such that 

and i = 1,2, ..., m } 

Step 5 :  Compute p(xo) E [0, A(x,)] to be the smallest value in that interval 

(30) f"xo + y(x,)h(x,)) = min { fO(xo + E.Lh(x0)) I y E lo, A(xo)l} - 
Step 6: Set xo = x, + p(xo)h(xo) and go to step 1. 

(31) Theorem : Let x,, xl, x2, ... be a sequence in SZ constructed by the 
algorithm (28), i.e. xl, x2, ... are the consecutive values assigned to xo in step 3 
or step 1. Then, either the sequence { x i  } is fmite and its last element, say x,, 
satisfies cpo(xk) = 0 or else { xi 1 is inkite and every accumulation point i in 
{xi } satisfies yo($) = 0. 

Proof: Obviously, the algorithm (28) defines a map a: SZ ---+ Q. We shall 
show that this map together with the map - f o ( - f o  taking the place of c 
and D the place of T)  satisfy the assumptions of theorem (17). For the purpose 
of applying theorem(l7) weshallagree to callapoint 2 E SZ desirable vcpo($) = 0. 

First we must show that the characterization (18) is satisfied. Thus, suppose 
that xo E Q satisfies cpo(xo) = 0. Then, since for all c0 =- 0, J,,(xo) 3 Jo(xo), 
we must have - E, < cpo(xo) < cp,(x,). Hence, after a finite number of halving 
of E, in step 3, the algorithm will find that cpo(xo) = 0 and will set xo = xo, 
i.e. a(xo) = x,. This is in agreement with (18). 

Now, given a point xo E D, the algorithm can only construct a new point x1 
such that f o ( x l )  < fo(xo). Hence, suppose that the algorithm sets x1 = xo 
(i.e. xo = xo in step 3 or step 6). If xo was reset to xo in step 3, cpo(x,) = 0. 
Suppose x, was reset to xo in step 6, i.e. p(xo)h(xo) = 0. But this implies that 
cp,,(x,) = 0, i.e. cp,,(xo) > - E, : a condition in step 3 which does not permit 
a continuation to step 6. Thus xo can only be reset to the value xo in step 3 
and then it satisfies cpo(xo) = 0. 

We shall now show that condition (19) is satisfied. Let xo E Q be any point 
such that cpo(xo) < 0. Then, from (30) 

(32) PC.0 + E.L(xo)h(xo)) - f 0 @ o )  .2 - 80 
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where 6, > 0. Now, from (6) it follows that there must exist a p' > 0 such that 

(33) 

where A(xo, p') = { x I x E SZ, IIx - xo]l < p' } and E' is the value of &(xO) 
used in computing h(x,) in step 2. Let M :  R" --f R1 be defined by 

M(x) = min max < V f i (x ) ,  h >. 
h E S  iEJ&,(x,) 

(34) 

Then M is continuous (I) and there is a p" > 0 such that 

(35) 
Let p = min { p', p" }, then, because of (33) and (35) and the fact that 

(36) 

But JEOll(x) C J,,(x), and hence, for all x E A(x,, p), we have 

(37) 

value ~ ( x )  > 
all i E JE(x)(x), ( V f ' (x) ,  h(x) > 6 - co/2. 

value theorem, that 

JM(x )  - cp,,(xo)) < so/2 for all x E A(x,, p"). 

cp,,(xo) < - E ~ ,  we have, for all x E A(x,, p), that 

Cp&,(X) < M(x) < - E0/2. 

(PE0,2(X) 6 cpE,(X> < - S O P .  

We therefore conclude that for all x E A(x,, p) the algorithm (28) will use a 
in computing h(x) in step 2, i.e. for all x E A(x,, p) and for 

Now, for any x E A(x,, p) and i = 0, 1,2, ..., m, we have, by the mean 

(38) f i(x + W x ) )  = f i ( x )  + A < v f ' ( x  + Ch(x)), 4x1  >, 
where C E [0, A]. Since the functions ( V fi(.), - ), i = 0, 1, 2, ..., my are uni- 
formly continuous on A(x,, p) x S, for each i E { 0, 1,2, ..., m }, there exists 
a Ai > 0 such that 

I < v f ' ( x  -k @(X))Y h(x) > - ( v f ' (x ) ,  h(x) )I < E o / 4  

for all C E [0, A']. Similarly, since the functions f '(e) are uniformly continuous 
on A@,, p) and since S is compact, there exist A' > 0, i = 1,2, ..., my such 
that 

(39) 

(40) IfYx + C W )  - f'(x)I 6 E&. 

Now, for each x E A(x,, p) and for each i E JE(x,lx>, ( V f '(x), h(x) ) < - ~ ~ / 2 ,  
and for each x E A(xo, p) and for each i E J+.)(x), f ' (x) < - ~,/2. Hence, 
setting 6 = min { A', A', ..., A", xl, x2, ..., i;" }, we have, for any x E A(x,, p) 

f ' ( x  + @h(x)) - f ' ( x )  < - FE,/~ for all i E J+)(x); 

(41) f ' ( x  + @h(x)) < 0 for all i E .&.,(x). 

(1) Proposition: Let M(x) = min g(x, y )  where g: R n  X R n - t  R' is continuous and 
UEP 

Y c R* is compact. Then M(*) is continuous. 
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Since for all x E A(xo, p) we must have p(x) 2 F;, we are led to the con- 

(42) - f o (x  + P(x)h(x)) - (- fo(x)> 2 $ E o k  

clusion that 

for all x E A(xo, PI, 

i.e. that condition (19) is satisfied. This completes our proof. 
We have already observed that by setting S = { x E Rn I lxil < 1 }, we can 

compute ~p,~,..(x) and h(x) by solving a linear programming problem, i.e. these 
quantities are obtainable by finite step procedures. Thus, the weak link in the 
algorithm seems to be the requirement of solving equations of the 
form fi(x + Ah) = 0 and of minimizing the function fo(*) along the linear 
segment { x I x = xo + ph(xo), p E [0, A(xo)] >. The following propositions which 
are obvious in the light of theorem (17), shows to what extent these operations 
may be approximated without affecting the convergence properties of the 
algorithm. 

(43) Proposition : Suppose that in step 6 of the algorithm (28) xo is reset 
to xo + poh(xo), where, for a fixed p. E (0, l), po satisfies 

(44) (f0(x0> - f O @ o  + poh(x0))) 2 p(fO(x0)  - fO(xo + P(xo)h(xo)). 

Then theorem (31) remains valid. 

(45) Proposition : Suppose that the f i ( * )  are convex, that the sets 
{ x I f'(x) G 0) are bounded for i = 1, 2, ..., m and that steps 4 and 5 of the 
algorithm (28) are replaced by the steps 4', 5' below. Then theorem (31) still 
remains valid. 

Step 4': Compute A0 > 0, A' > 0, A2 > 0, ..., Am > 0 to satisfy, for 
any 0 < 6 < 112, 

(1 - 6)A0 < v f0(x0>, W O )  ) G f"x0 + lOh(x0)) - fO(xo> 

A'6 < v fi(xo), W O )  ) G f i @ o  + Aih(xo>) - fi(xo) < - fi(xo> 

G aho < v f0(xo), W O )  >; 

for i # 0, i E JE,,(xo); 
- 1% < f i ( x o  + ~ % ( x , ) )  G 0, for i E Jeo(x0). 

Step 5' .- Set p(xo) = min { Ai I i E { 0, 1,2, ..., m I}. 
The introduction of so into the algorithm (28) ensures that for each non- 

optimal xo E a, there exists a p > 0 and a Am > 0 such that for all x E Q, 
I(x - xoll G p, we have x + Ah($ E Q for A E [0, &I, i.e. it ensures a minimal 
step size about each non-optimal xo E a. This effect is obvious from the proof 
of theorem (31). 

in (28) 
is to ensure that we do not solve systems of simultaneous equations of the 
form f i ( x )  = 0, i E I, for points on the intersection of surfaces when these 

A second important, but not entirely independent, effect of using 
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points are not optimal. The solution of such a system of nonlinear equations 
by gradient methods requires an infinite number of operations and hence 
solution points would become convergence points of a sequence xo, xl, x2, ... 
constructed by an algorithm not using an E procedure. Thus, an algorithm 
would jam (or zigzag) without << the antijamming precautions )> defined by the 
use of in the algorithm (28). 

IH. GRADIENT PROJECTION METHODS 

We shall now consider two variants of Rosen's gradient projection method [6]. 
These methods are particularly attractive when the constraint set Q is a convex 
polytope with interior and fO(.) is convex. When Q has no interior, one simply 
restricts oneself to the linear manifold containing Q. 

(46) Assumption : We shall suppose that the cost function fo(-) is convex 
and that the constraint functions fi(-), i = 1,2, ..., m are of the form 

(47) f ' ( x )  = (A,  x ) - b', 
wherefi E Rn and bi E R'. We also assume that the set 

has an interior. 
D = ( x  I f ' (x )  < 0, i = 1,2, ..., m } 

(48) Dejinition: For every x E i-2 and a 2 0 let 

I&) = { i I (fi, x ) - b' + a 2 0, i E { 1,2, ..., m }}. 

(49) Assumption : We shall suppose that there exists a a* > 0 such that 
for every x E Q and a E [0, a*] the vectorsfi, i E I&) are linearly independent. 

(50) DeJinition: For every a E [0, a*] and x E i-2 let 

(51) f " ,x (x )  = ( f i ) i E l a ( x )  

be a matrix whose columns are fi, i E I&) (ordered linearly on i) .  Let Plcr(x) be 
the matrix which projects R" into the subspace spanned by the vectors fi, 
i E IJx), and let P&(x, (') be the matrix which projects R" into the subspace 
orthogonal to all the fi, i E I&), i.e. 

(52) PI&) = FIor(x)(F:cc(x)Flcc(x))- lF:or(x) 

(53) P:o(x) = I- PI&). 

(Note that matrices PI,,,,, P&(x) are symmetric and positive semidefinite.) 
Consequently, for every x E Q and a E [0, a*] we have 

(54) v f O ( x )  = PI&) v f0(4 + P;&> v f0(4 = FI&,Ea(x> + &) v f0(4 
(1) When I&) is empty, we shall assume that Pza(%) is the zero matrix and that Pf,(,) 

is the identity matrix. 
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where 
-1 T (55) Ea(x> = ( F L ( x ) F r a ( x ) )  Fra(x) v fo(x>* 

(56) P:,(i) v fO($) = 0, Eo($) d 0. 

It now follows directly from corollaries (10) and (16) that $ is optimal if 
and only if 

We make one more observation before stating an algorithm. Consider 
the expansion (54) and let j E Ia(x). Then, from (54) (since 

P+a(x)- jp+a(x) = p+g(x)), 

(571 & ( x ) - j  V fo(x) = Ei(x)pf,(x)-jfj  + pia(x) V fo (x) ,  

and, since (57) is a decomposition into orthogonal components, 

(58) IIp+a(x)-j V f0(x)l12 = (Ei(x>>2 \ l J Y a ( x ) - j f j \ \  + l lpfa(x) V f0(x>112. 

Finally note that 

(59) <fi, p r g ( x ) - j  V f o ( x )  ) = ea(.> (fi, p+a(x)-jfj >. 
(60) Algorithm : Suppose we are given a E E [0, E*],  with E* as in (491, 

a E' ~ ( 0 ,  E) and a xo EQ. 
Step I :  Set E(x~) = E m e  shall use the abbreviated notation = &(xO)]. 
Step 2: Compute 

(61) 

Step 3: If IIheo(xo)ll > E ~ ,  set h(xo) = - h,,(x0) and go to step 6. 
If I(h,o(xo)((2 < < E', compute ho(xo) [as in (61)] and So(xo) [as 

in (55)]. 
If ~ ~ h o ( x o ) ~ ~ z  = 0 and Eo(xo) 6 0, set xo = xo and stop (xo is optimal). 

Otherwise, set h(xo) = - h,(x0) and go to step 4. 

If ~ ~ h , o ( x o ) ~ ~  < and > E' go to step 4. 
Step 4 :  Compute Eeo(xo) [as in (5511. 

If ~EO(xO) 6 0 set h(xo) = - h,,(xo) and go to step 5. 
If E&) > 0, compute 

h,,(xo) = f%&,) v fO(xo). 

and 

(62) &,(xo> = p+=,(xo)-j V f0(xo) 
such that 
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Set h(xo) = - h,(xo) and go to step 5. 
Step 5 :  If IIh(xo)II * < E ~ ,  set 
If IIh(x,)II > go to step 6. 
Step 6:  Compute p(x,,) > 0 to be the smallest value satisfying 

= zo/2 and go to step 2. 

(64) f "Xo + p(xo>h(xo>> = { fO(xo + ph(x0)) I (xo + ph(x0)) E 1 
Step 7 :  Set xo = xo + p(xo)h(xo) and go to step 1. 

(65) Theorem : Let xo, xl, x2, ... be a sequence in constructed by the 
algorithm (60), Le. xi, x2, ... are the consecutive values assigned to xo in 
step 7. Then, either {xi } is finite and its last element is optimal, or else { x i  } 
is i m t e  and every accumulation point of { x i  } is optimal. (When f o  is 
strictly convex, the problem has a unique optimal solution 2 and then xi -+ i.) 

Proof: We shall again make use of theorem (17) under theassumption that 
T = a, a: --t !2 is dehed by the algorithm (60), and c = - fo. We begin 
by showing that the characterization (18) is satisfied. Suppose xo is optimal. 
Then ho(xo) = 0 and Fo(xo) 6 0. Now, for any > 0, IE,(xo) 3 Io(xo) and 
hence 

(66) F,(xo> 6 0 
and 

(67) ~p&o(xo)ll = Ilho(xo>II = 0. 

Consequently, after a finite number of halvings of .z0 in step 5, the algorithm 
will stop in step 3, ressetting xo to its original value. This satisfies (18). 

By construction, the algorithm stops setting xo = xo in step 3 if and only 
if xo is optimal. This is the only possible condition for setting xo = xo, since 
it is not possible to have p(xo)h(xo) = 0 in step 7 for the following reasons. 
First, h(xo) = 0 is not allowed in step 6 and hence in step 7. Second, if h(xo) # 0 
then p(xo) # 0, since for all 

i E I J X ~ ) ,  ( h ( x o ) , ~  ) < o and < v fo(xo>, h(x0) ) = - IIh(xO)1l2 < 0. 

We must now show that (19) is satisfied, i.e. that if xo E !2 is not optimal. 

(68) - (fo(x + p(x)h(x)) - f O(x)) 2 6 for all x E Q, IIx - xoII < p. 

be the last value of &(xO) (Le. just before being reset again in step 1). 

then there exists a p > 0 and 6 > 0 such that 

Let 
Then, either 

(69) ~ ~ ~ & o ( x o ) / ~ 2  ' Eo, 

(70) (IJEo(x0>II2 > Eo. 

or else 
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Suppose (69) took place, i.e. that h(xo) = - h,(xo). Then there exists a 

(71) IIP:E~(~~) v 2 zo/2 for all x E ~ ( x , ,  p’> 

Let p” > 0 be such that I&) C Ico(xo) for all x E A(xo, p”) and let 

p’ > 0 such that 

where, as before, A(xo, p‘) = { x I x E Q IIx - xoII < p’ }), 

p = min { p’, p” }. Then, for all x E A(xo, p) and cc E [0, E ~ ] ,  

(72) IIP:o(x) v fO(x>II 3 IIP:Eo(x) v fO(x)II 3 IIP;&(xo) v fOWII 3 E0/2. 

We therefore conclude that if (69) took place, then for all x E A(xo, p) the 
algorithm will use a final value of E(X) 3 ~,/2. 

Now suppose that (70) took place, i.e. that &(x,) = -hEo(xo). Then, 

Suppose IIhEo(xo)[[ = 6’ > 0. Let p” > 0 be such that I&) C Ico(xo) for 
all x E A(xo, p”). Then there exists a p E (0, p”), such that for all x E A(xo, p) 
and for all cc E [0, E,], 

either p E o ( ~ o ) ~ ~  > 0 or ~ p c o ( ~ o ) ~ ~  = 0. 

(73) IIhu(x)ll > IIP:or(X) v f “ < . > l l 2  2 IIP:Eo(X) v f0 (X>1I2  
3 p:c&o) V f ( 4 ( (  3 6 ’ P Y  

and hence for all x E A(xo, p), the algorithm will set E(X) 3 [6’/2] > 0 (1). 

Now suppose that llhEo(xo)ll = 0. Then Vfo(xo)  = 

this representation the coefficients are unique. Now let 
~ ~ o ( x o ) f i  and in 

i EIEJxo)  

6 ,  = { ll~:vfo(~o)~l I I= Ic0(xo), II~IlVfO(xo)(I > 0 1 
(74) and 

Obviously, 6, > 0 and 6, > 0. Let 6’ = min { E ~ ,  a,, 6 ,  }, and, again, 
let p“ > 0 be such that Ico(x) C IEo(xo) for all x E A(xo, p“). Then there exists 
a p E (0, p”) such that for all x E A(xo, p) and all x E [0, E,], either 

11 P;z(x)vflc.>ll 2 6’/2 
(75) or 

We therefore conclude that if (70) took place, then for all x E A(x,, p), the 
algorithm will use a final value of ~ ( x )  2 [6’/2] > 0. 

(1) Let k be an integer such that > 812 > ~ 1 2 ~ .  Then we define [8’/2] = 2*+[. 
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Now, for all x E A(xo, p), and for all i E I,cxl(x), ( f i, h(x) ) < 0 [see (59), 
(6 I)], and so, as far as these constraints are concerned, one can displace oneself 
an arbitrary amount in the direction h(x) from x without violation. We now 
conclude (as in the case of the feasible directions algorithm) that there exists a 
A,,, > 0 such that x + Ah(x)/(lh(x)(( E Q  for all AE[O,AJ and X E Q ,  

Next, we note that ( V fo(x) ,  h(x) ) Q - c0/2 (or - [6'/2]) for all 
x E A(xo, p) and that there exists a y such that IIh(x)II f y for all x E A(xo, p). 
It now follows, by means of an argument essentially identical to the one fol- 
lowing (31), in the proof of the feasible directions algorithm, that (68) is 
satisfied for some 6 > 0. This completes our proof. 

Since ( Vf(x), h(x) ) = - (lh(x)1I2, one may wish to accelerate the algo- 
rithm (60) by increasing ]Ih(x)ll as much as possible at each step. The following 
acceleration procedure is very easily seen as not affecting the convergence 
properties of the algorithm (60). (To account for it we need to modify the proof 
of theorem (65) only very slightly.) 

Step 1' :  [Acceleration procedure, to be inserted between step 1 and step 2 
of (60)] : 

IIX-XoIf f P* 

Compute EEO(xO), x,,(x0) [as in (55), (6211. 
If EEO(xO) 6 0 go to step 3. 

If 
S,,(Xo> > 0 and ~ l % o ( ~ o ) [ ~  2 2 p & o ) l ~  set Mxo) = ~,&xo> 

and go to step 5. 

If E&O> > 0 and /Iheo(~O)II < 2 p,,(xO)l[, 80 to step 2. 
This concludes our discussion of the convergence of gradient projection 

methods. We shall next discuss methods which are a cross between gradient 
methods and methods of feasible directions. 

N. METHODS OF FEASIBLE DIRECTIONS 
WITH PROJECTION OPERATORS 

In the algorithm (28), to obtain a <<feasible direction>) h(xo) we had to 
solve a minimization problem. In the algorithm (60) this process was replaced 
by the computation of a projection operator which, generally, is easier to cal- 
culate. However, algorithm (60) is only applicable to problems with linear 
inequality constraints. We shall now present a modification of (60) which 
applies to more general stituations. This modification was inspired by a closely 
related heuristic algorithm described in [SI. 
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(76) Assumption : We shall suppose in this section that all the functions f i, 

i = 0, 1, 2, ..., m in (1) are convex and that the set 

has an interior. 

(77) Assumption : We shall suppose that theie exists a a* > 0 such that 
for every CI E [0, a*] and x E Q, the vectors V f i ( x ) ,  i E Ia(x) are linearly inde- 
pendent [where lab) was defined in (4811. 

We shall retain in this section the notation introduced in the preceding one 
with the following, rather obvious modification. For every a E [0, K*] and 
x E Q we shall let 

Q = { x I f i ( x )  < 0, i = 0, I, 2, ..., m 1 

(78) I ; l a ( x )  == P Y ( x ) ) i c I a ( x )  

be a matrix whose columns are the V f i ( x ) ,  i E Ia(x) (ordered linearly on i). 
The projection matrices P;a(x) will still be defined by (52) and (53), 
respectively, with the matrix FIafX) now defined by (78), etc. 

(79) Algorithm : Suppose we are given a E E [0, a*] with a* as in (77% an 
E‘ E (0, E )  and a xo E Q. 

Step I : Set E(x~) = E. [We shall use the abbreviated notation = E(x~) . ]  
Step 2:  Compute 

(80) h,,(xo) = ~:,o@o)vfo~xo) .  

Step 3:  If ~~h,o (xo)~ /2  > coy set h(xo) = - h,,(x0) and go to step b. 

If \lhEo(xo)1/2 < 
So(xo) [as in (5511. 

If ho(xo) = 0 and So(xo) 5 0, set xo = xo (xo is optimal). 
Otherwise set h(xo) = - h,,(x0) and go to step 4. 
If ~~h,o (xo) / / z  < E,, and c0 > E’ go to step 4. 
Step 4 .- Compute %,,,(xo). 
If [so(xo) 6 0 set h(xo) = - h,,(x0) and go to step 5 

If &,(xo) > 0, compute 

and .so < E’ compute ho(xo) [with = 0 in (SO)] and 

(81) %o(xo) = p ~ ~ , ~ x o ) - j V f o ( x o )  

(82) 

such that 

Il&SxO)II = max 11 p:eo(xo)- iVfo(xo)lI . 
i € I ~ , ( x o )  

sao(X0)’o 

Set h(xo) = - &,(xo) and go to step 5. 
Step 5 : If 11 h(xo))I * < c0 set = c0/2 and go to step 2. 
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If 11 h(xo) 11 > so go to step 6. 
Step 6:  Set K,,(xo) = Izo(xo) when h(xo) = - h,,(xo) and set 

K,(xo) = 4,(xo) - j  

~ ( x o )  x ~(xo>h(xo> + ~ K E , ( x o ) ( ~ ~ z o ( x ~ ) ~ ~ E ~ ~ x " ~ ) -  

when h(xo) = - &@o). Compute 

(83) 

(84) < V J f k ( ~ 0 > ,  4x0) > - E o  

where t = - ~ ~ ( 1 ,  1, ..., 1) and p(xo) 2 1 is the smallest positive scalar such 
that 

for k = 0 when h(xo) = - hE,(xo) and for k = 0, j when h(xo) = - &,(xo). 
Step 7: Compute A@,) > 0 such that 

(85) A(x,) = max { A I f i [ x o  + Cv(xo)] < 0, C E [0, A], i = 1,2, ..., m 1 . 
Step 8 :  Compute p(xo) to be the smallest value satisfying 

(86) f O b o  + P(Xo>Nxo>l = min { f O b o  + P4xo)l I P E lo9 A(xo)ll * 

Step 9 :  Set xo = xo + ~(xo)u(xo)  and go to step 1. 
(87) REMARK : Note that the above algorithm differs from the algo- 

rithm (60) only in the operations defined in step 6. 

(88) Theorem : Let xo, xl, x2, ... be a sequence in Q constructed by the 
algorithm (79), i.e. xl, x2, ... are the consecutive values assigned to xo in 
step 7. Then either { x i  > is finite and its last element is optimal, or else { x i  1 
is infinite and every accumulation point of { x i  is optimal. (When either fo 
is strictly convex or i2 is strictly convex, or both, there is a unihue optimal 
solution for the problem (l), and hence a unique accumulation point for the 
sequence { x i  >, when infinite.) 

Proof : Again, we shall simply show that the assumptions of theorem (17) 
are satisfied. We omit a demonstration that condition (18) is satisfied since in 
this case it is identical to the one given for algorithm (60) in the proof of theo- 
rem (65). 

We shall now show that for every non-optimal xo E L2, there exist a i; > 0 
and a 6 > 0 such that 

(89) - ( f o ( x  + p(x)u(x)) - fo (x) )  2 6 for all x E A(xo, F). 
First proceeding as in the proof of theorem (60), and, in addition, using 

the fact that thefi are continuously differentiable, we can show that if xo E i2 
is not optimal, then there exists a p > 0 and a 6' > 0 such that for all 
x E 4x0, P) - .  

(90) 
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i.e. ~ ( x )  2 [6'/2], for all x E A(x,, p). Next, we find that, by (84), for all 
x E A(x0, P I  

(9 1) 

(92) 

(93) 

( Vf0(X), v(x) ) < - .(X) d - [6'/21 

( Vfj(x), v(x) ) 6 - .(XI < - 18/21. 

( Vf'(x), v(x) > = - .(X) 6 - [6'/2] 

if KE(X)(x) # lE(X)(x) K E ( X ) ( x )  = - j ) Y  

Furthermore, for all i E KE(&), x E !2, IIx - xoI( < p, 

Finally, an inspection of (83), (84), (61) and (62) indicates that there exists 
6 E (0, p] and a M E  (0, 00) such that IIv(x)I/ < M for all x E A(x,, p). The 
proof may now be completed by following the steps after (37) in the proof 
of theorem (31). 

(94) REMARK : The acceleration step 1' proposed for algorithm (60) can 
also be utilized in the present algorithm. 

We now turn to an entirely different type algorithm whose convergence 
can also be proved by means of theorem (17). 

V. A DECOMPOSITION ALGORITHM 

So far, we have presented a number of algorithms whose convergence was 
proved by setting c = -fo in theorem (17). In order to show that c may have 
to be chosen Werently, we present a simple decomposition algorithm which 
is in the class discussed extensively in [7]. 

Consider the particular problem 

(95) minimize llxl12 subject to Ax E Q, 
x l  

where x E RN, ( ( ~ 1 1  = 2 (xi)2, A is a n x N matrix with N % n, of rank n, 
i= 1 

and !2 C R" is defined by 

(96) 
and is assumed to be strictly convex and compact. 

(97) Dejinition : Let S = { z E Rn I llzll = 1 > and let z, : S - t  Q be 
defined by ( z - ~(s), s ) < 0 for all z E Q. 

(98) Dejinition : Let T = { s E S I ( J, v(s) ) < 0 >. Let c : T 4  R* be 
defined by 

(99) 

(100) w(s) = Ax(s), 

Q = { z E R" I f i ( z )  < 0, i = 1, 2, ..., m > 

c(s) = min { llxll2 I< s, AX - v(s) ) = o > , 
and let w : T-P R" be defined by 

where x(s) E R" is such that c(s) = Ilx(,s)l12, i,e. x(s) = &)AT#/ l]ATsll. 
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(101) RE- : It is shown in [7] that u, w, and c are continuous maps. 

(102) Algorithm : Suppose that a so E T is given. 
Step I :  Compute u(so), c(so), and w(so). 
Step 2 :  If u(so) = w(so), stop. [c(so) is the minimum cost for (95) and 

x(so) is the desired solution, i.e. w(so) = Ax(sO)]. 
If u(so) # w(so), compute a(so), where a : T 4 T is defined by 

u(s) E c(s) (8' E TI s' = b+ t.(w(s)-?l(s)),A, pE(--, + 00) >, 
(103) c(a(s)) = max { c(s') I s' E c(s) } 

and 11s - a(s)ll is minimized (to make u(s) unique). 1 
Set so = a(so) and go to step 1. 

(104) Theorem : Let so, s1, s,, ..., be a sequence of points in T generated 
by the algorithm (102), then either { s i  } is f i t e  and its last element, s,, is such 
that c(sk) = min { llxll2 I AX E Q } and x(+) is optimal for (95), or else { s i  } 
is infinite and si 4 i, where c& = min { I[ x[I I Ax E Q } and x6) is optimal 
for (95). 

It is shown in [7] that the map (cu) : T 3 R1 is continuous and hence that 
the maps c and a as defined by (99) and (103) respectively, satisfy the condi- 
tions of theorem (17). 

For practical aspects of algorithms such as (102), i.e. methods of computing 
u(s) and the effect on convergence of finitely calculable approximations to 
u(s) and a(s), the reader should consult [4] and [7]. 

CONCLUSION 

In presenting a unified approach to optimization algorithms, we have 
mostly used as examples variations of well known nonlinear programming 
algorithms. However, this approach is also fruitful in application to optimal 
control algorithms such as those in [7], to unconstrained optimization algo- 
rithms [SI (modified Newton methods, conjugate gradient methods), and to 
penalty function algorithms such as 1121. Thus, the scope of the approach 
presented in this paper is quite large, and it is hoped that it will lead to new 
developments. 

The research reported herein was supported by the National Aeronautics and 
Space Administration under G r a n w  
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